Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 430: 12-24, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27107935

RESUMO

The aim of the present study was to characterize the mechanism underlying estrogen effects on the androgen-independent prostate cancer cell line PC-3. 17ß-estradiol and the ERß-selective agonist DPN, but not the ERα-selective agonist PPT, increased the incorporation of [methyl-(3)H]thymidine and the expression of Cyclin D2, suggesting that ERß mediates the proliferative effect of estrogen on PC-3 cells. In addition, upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by 17ß-estradiol and DPN were blocked by the ERß-selective antagonist PHTPP in PC-3 cells. Upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by DPN were also blocked by PKF118-310, a compound that disrupts ß-catenin-TCF (T-cell-specific transcription factor) complex, suggesting the involvement of ß-catenin in the estradiol effects in PC-3 cells. A diffuse immunostaining for non-phosphorylated ß-catenin was detected in the cytoplasm of PC-3 cells. Low levels of non-phosphorylated ß-catenin immunostaining were also detected near the plasma membrane and in nuclei. Treatment of PC-3 cells with 17ß-estradiol or DPN markedly increased non-phosphorylated ß-catenin expression. These effects were blocked by pretreatment with the ERß-selective antagonist PHTPP, PI3K inhibitor Wortmannin or AKT inhibitor MK-2206, indicating that ERß-PI3K/AKT mediates non-phosphorylated ß-catenin expression. Cycloheximide blocked the DPN-induced upregulation of non-phosphorylated ß-catenin, suggesting de novo synthesis of this protein. In conclusion, these results suggest that estrogen may play a role in androgen-independent prostate cancer cell proliferation through a novel pathway, involving ERß-mediated activation of ß-catenin.


Assuntos
Receptor beta de Estrogênio/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Cicloeximida/farmacologia , Estradiol/farmacologia , Receptor beta de Estrogênio/agonistas , Humanos , Masculino , Nitrilas/farmacologia , Fenóis/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Timidina/metabolismo
2.
Spermatogenesis ; 4: e28138, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25225624

RESUMO

The identification of the hormones and other factors regulating Sertoli cell survival, proliferation, and maturation in neonatal, peripubertal, and pubertal life remains one of the most critical questions in testicular biology. The regulation of Sertoli cell proliferation and differentiation is thought to be controlled by cell-cell junctions and a set of circulating and local hormones and growth factors. In this review, we will focus on receptors and intracellular signaling pathways activated by androgen, follicle-stimulating hormone, thyroid hormone, activin, retinoids, insulin, insulin-like growth factor, relaxin, and estrogen, with special emphasis on estrogen receptors. Estrogen receptors activate intracellular signaling pathways that converge on cell cycle and transcription factors and play a role in the regulation of Sertoli cell proliferation and differentiation.

3.
Spermatogenesis ; 3(1): e23181, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23687614

RESUMO

The Wnt/ß-catenin signaling pathway controls several biological processes throughout development and adult life. Dysregulation of Wnt/ß-catenin signaling underlies a wide range of pathologies in animals and humans, including cancer in different tissues. In this review, we provide an update of the Wnt/ß-catenin signaling pathway and the possible roles of the Wnt/ß-catenin signaling in the biology of testis, epididymis and prostate. Data from our laboratory suggest the involvement of 17ß-estradiol and estrogen receptors (ERs) on the regulation of ß-catenin expression in rat Sertoli cells. We also provide emerging evidences of the involvement of Wnt/ß-catenin pathway in testis and prostate cancer. Our understanding of the role of Wnt/ß-Catenin signaling in male reproductive tissues is still evolving, and several questions are open to be addressed in the future.

4.
Spermatogenesis ; 1(4): 318-324, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22332115

RESUMO

In this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17ß-estradiol regulation of Sertoli cell function in immature rats. 17ß-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells. In conclusion, ESRs and GPER can mediate rapid 17ß-estradiol signaling in Sertoli cells, and modulate transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development and to direct further studies, which may contribute to better understand the causes of male infertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...